
Pitfalls of
Microservices

by Marian Veteanu

Introduction to Microservices

What are Microservices?

• A software architecture style where applications
are broken down into smaller, independent
services.

• Each service handles a specific business function
and communicates with others over a network.

AP
I G

at
ew

ay

HTTP

HTTP

gRPC

HTTP

HTTP

HTTP

Why Microservices?

• When executed right, microservices offer SaaS
products attributes such as scalability, flexibility,
and independent deployment of services.

Why not Microservices?

• As awesome as may sound, microservices are not
for everyone. Keep reading to understand some of
the microservices pitfalls before you start your next
project.

Microservices are not a silver bullet

While microservices can offer scalability, flexibility, and better fault isolation, they are not always the best
solution for every product.

Simple applications

For small, straightforward
applications with limited
complexity and a single team,
a monolithic architecture may
be more appropriate.

Limited scalability needs

If the product does not require
frequent scaling or doesn’t
anticipate high traffic, the
complexity of microservices may
add unnecessary overhead.

Resource constraints

Microservices require extensive
infrastructure, monitoring, and
operational resources. Small
teams or startups might lack
the resources to handle the
added complexity.

Pitfall 1: Increased Complexity

UI

Business Logic

DB

μS

DB

μS

DB

μ Front

μS

DB

vs

Monolith architecture
Microservices architecture

μ Front μ Front

Data Access

API Gateway

• Microservices introduce operational complexity
compared to monolithic architectures.

• More services to manage and monitor.

• Multiple databases and networking issues.

Each microservice is a separate entity that
requires its own set of configurations for
deployment, networking, security, logging,
and resource allocation.

Deploying or scaling a service requires
coordination across many independent
teams.

Due to increased complexity, microservices
are generally recommended for big-scale
SaaS products. If the product is sold for on-
premises installation, the additional
overhead can create complications for your
customers' IT personnel.

Pitfall 2: Overhead in small teams

Challenge:

Microservices architecture might be
overkill for small teams or simpler
applications.

Before deciding on a microservices
architecture think if you have the right
resources to develop, manage, monitor,
and deploy each service.

Challenge:

Teams must align on standards and practices.
• Microservices enable different teams to use different

tools, programming languages, and methodologies.
• Lack of a consistent approach can lead to fragmentation

and inefficiency.

Example: A team working on Service A uses Go, while
another team uses Node.js for Service B, causing a learning
curve during cross-team collaboration.

R&D
Department

Pitfall 3 – Data Consistency and Integrity

Order Service Stock Service Payment Service

request

response

Check stock

Process payment

Challenge:

Maintaining consistency between
distributed services.

Traditional databases provide
consistency guarantees (ACID), but
microservices often use separate DBs.

Example:

An order service updates the inventory
service, but the payment service fails
— how do you roll back?

Example from: https://dilfuruz.medium.com/data-consistency-in-microservices-architecture-5c67e0f65256

Pitfall 4 – Latency and Performance

AP
I G

at
ew

ay

SQL
Server

Service A

Mongo
DB

Service B

Redis
Cache

Service C

Challenge:

Increased network overhead and potential latency.

Inter-service communication introduces network
latency.

Serializing and deserializing data across services.

Example:

Complex service chains where service A calls
service B, which calls service C, leading to slow
response times.

Circuit Breakers

A circuit breaker is a pattern used to
detect service failures and prevent a
cascade of failures across services.

How it works:

When a service call fails repeatedly, the
circuit breaker "opens," preventing further
attempts to call the failing service.

If the service is healthy again, the circuit
breaker "closes," allowing normal traffic
flow.

Benefits:

Prevents overloading failing services.
Protects upstream services from
cascading failures.

Pitfall 5 – Need to Implement Advanced Resilience Patterns

Timeouts

Setting timeouts for service calls ensures that
services don’t hang indefinitely waiting for a
response from a slow or failing service.

How it works:

When making a call to another service, a timeout
value is set.

If the service does not respond within the timeout
period, the call is aborted, and the failure is handled
by a retry or fallback mechanism.

Benefits:

Prevents services from waiting indefinitely for a
response.
Ensures resources are not consumed by long-
running or hung requests.

Retry Mechanisms

Automatic retries allow microservices to handle
transient failures, such as network timeouts or
temporary service outages.

How it works:

When a service call fails, the retry mechanism
attempts to call the service again after a short
delay.
The number of retry attempts and the delay
between retries can be configured based on the
expected failure recovery time.

Benefits:

Improves fault tolerance for services with
intermittent issues.
Avoids unnecessary service outages for
temporary network or service glitches.

Example: If a payment service is down, retries can be made, and after several failures, the circuit breaker opens to prevent further traffic.
Timeouts ensure calls do not hang indefinitely while waiting for the service to respond.

Circuit Breakers + Retries + Timeouts provide a robust mechanism for improving the fault tolerance of microservices.

Service
Orchestrator

Pitfall 6 – Service Dependencies and Orchestration

Challenge:

Hidden service dependencies create
complex relationships.

Circular dependencies between services
can cause cascading failures.

Service orchestration requires robust
management tools.

Example:

A single service failure might trigger failures
in downstream services if dependencies are
not properly managed.

Service A Service B

Service C Service D
Workflows

Diagram from: https://cloud.google.com/blog/topics/developers-practitioners/service-orchestration-google-cloud

Pitfall 7 – Monitoring and Debugging

Challenge:

Difficult to trace failures across services.

Debugging issues in one service might require
correlating logs from multiple services.

Centralized logging becomes a must.

Example:

A user faces an issue in the UI, but the root
cause could be hidden deep within the
microservices ecosystem.

App Service A Service B Service C

Monolith application Microservices application

Service A Service B Service C

Microservices application

Logging
Service

(Can be cloud-
native PaaS

service)

Pitfall 8 – Version Management

Challenge:

Coordinating versioning, API compatibility, and
service dependencies.

CI/CD pipelines must account for many services
and their interactions.

Example:

Service A is deployed but depends on an old
version of Service B, causing compatibility issues.

Keeping dependent services compatible when
updating a single service is tricky.

Service A

Service B

Service C

Service D

Service E

Pitfall 9 – Security

Challenge:

Distributed services increase the attack
surface.

It is recommended to implement each service
with its own security measures (authentication,
authorization).

Securing inter-service communication is vital.

Example:

A compromised service could be used as an
entry point to attack other services.

AP
I G

at
ew

ay

Hacker

Study results: Drivers and Barriers for Microservice Adoption

Drivers for microservice adoption in different industries

Barriers for microservice adoption in different industries

Data extracted from paper:

Drivers and Barriers for
Microservice Adoption – A Survey
among Professionals in Germany

Study results: Microservices issues, advantages and disadvantages

Data extracted from paper:

Microservices in Agile Software
Development: a Workshop-
Based Study into Issues, Advantages,
and Disadvantages

Marian Veteanu
Technology Architect and Product Leader

Looking to see how I can add value to your
organization? Message me!

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Marian Veteanu Technology Architect and Product Leader Looking to see how I can add value to your organization? Message me! https://www.linkedin.com/in/mveteanu/ https://x.com/mveteanu

