
21 Tips for
Designing
Web APIs
Best Practices and Principles
for Scalable, Secure, and
Developer-Friendly APIs

by Marian Veteanu

From APIs to Web APIs

What is an API?
An API (Application Programming Interface) enables
applications to communicate and share data.

Internal APIs
Internal APIs are used within an organization or application to
connect services, modules, or systems, supporting
modularity and enhancing functionality internally.

External APIs
External APIs are made available to third-party developers or
customers to extend the functionality of a product.

Web APIs
Web APIs are specifically designed to enable
communication over the Internet. Protocols enabling web
APIs include REST, GraphQL, and SOAP.

Web APIs facilitate modular and scalable development,
making it easy to integrate with third-party services and
support microservices architectures.

Tip #1: Choose the Right API Style:
REST, SOAP, or GraphQL

SOAP
Heavyweight, uses XML, and is more enterprise oriented.
SOAP is generally found in older applications.

REST
Lightweight, more modern, uses HTTP, and is stateless.

GraphQL
Enables clients to specify required data, preventing over-
fetching or under-fetching. Often considered alternative to
REST.

gRPC (gRPC Remote Procedure Calls)
A high-performance, language-agnostic RPC framework
designed for fast communication between microservices,
typically using HTTP/2.

// REST endpoint example
GET /api/products

// GraphQL query example
query { product(id: 1) { name, price } }

In this presentation, our focus will primarily be on RESTful APIs.

Tip #2: Understand Idempotency
and Its Importance

Idempotency is a concept in API design where making multiple
identical requests has the same effect as making a single request.

In other words, an operation is idempotent if repeating it doesn’t
produce different outcomes or side effects.

GET: Always idempotent; retrieves the same data with each
request.
PUT: Designed to be idempotent; updates or replaces a resource,
resulting in the same final state if repeated.
DELETE: Should be idempotent; removes a resource, so repeated
calls should yield the same "deleted" state.
POST: Typically non-idempotent; used for creating resources,
where each request can produce a new resource.

Best Practices for Ensuring Idempotency

Use Unique Identifiers: For operations like POST, generate unique IDs
client-side or server-side to avoid duplicate creations.
Implement Request Deduplication: For non-idempotent requests,
consider using unique request IDs or tokens to detect and prevent
duplicates.
Document Idempotency for Each Endpoint: Clearly indicate in the API
documentation whether each endpoint is idempotent, helping
developers avoid unintended behaviors.

Tip #3: Implement Rate Limiting
to Prevent Abuse
Rate limiting is a technique used to control the number of
requests a client can make to an API within a specific time
period.

Limits protect the API from being overwhelmed by excessive
requests, whether intentional (e.g., spam or DDoS attacks) or
unintentional, ensuring that one client or user doesn’t
monopolize API resources.

User-Based Rate Limiting:
Limits are applied based on
user identity (e.g., 100
requests per user per
minute).

IP-Based Rate Limiting:
Limits are set per IP
address, commonly used
for APIs without user
authentication.

Global Rate Limiting: Sets
a limit across all clients to
protect the server from high
overall load.

Endpoint-Based Rate
Limiting: Different rate limits
can be applied to different
endpoints (e.g., lower limits
for data-heavy operations).

const rateLimit = require('express-rate-limit');

// Define rate limiting rule: 100 requests per 15 minutes per IP
const limiter = rateLimit({
 windowMs: 15 * 60 * 1000, // 15 minutes
 max: 100, // Limit each IP to 100 requests per windowMs
 message: "Too many requests from this IP, please try again later."
});

Tip #4: Use Versioning to Maintain
Compatibility
API versioning allows developers to introduce new features, fix issues, or
make improvements without breaking existing functionality for current
users.

When to Introduce a New API Version?

▪ Breaking Changes: Introduce a new version if there’s a significant
change in data structure, required parameters, or behavior that could
disrupt current users.

▪ Major New Features: Create a new version if a major new feature set
requires modifications that would impact the current API design.

▪ Deprecation of Old Features: When phasing out legacy features,
provide them only in older versions, encouraging users to migrate.

Common Versioning Approaches:

URI Versioning (Most common):

Adds the version number in the URL
path, making it clear and accessible.

Header Versioning:

Specifies the version in a custom header,
keeping URLs clean.

Query Parameter Versioning:

Appends the version as a query
parameter in the URL, which can be
flexible but may clutter the URL.

Content Negotiation:

Uses the Accept header to specify the
version, allowing the server to choose the
best response format.

Example: GET /api/v1/users vs. GET
/api/v2/users

Example: Accept:
application/vnd.yourapp.v1+json

Example: GET /api/users?version=1 Example: Accept:
application/vnd.yourapp+json; version=1

Tip #5: Consider using HATEOAS
for Dynamic Discovery
HATEOAS (Hypermedia as the Engine of Application State) is a
principle within RESTful APIs where each response contains
links that guide clients on how to navigate and interact with
the API dynamically.

By embedding hypermedia links in responses, clients can
discover available actions without hardcoding endpoint paths,
making the API more self-descriptive and adaptable to future
changes.

Response with HATEOAS Links:

app.get('/api/v1/users/:id', async (req, res) => {
 const user = await UserService.getUserById(req.params.id);

 // Constructing the HATEOAS response
 const response = {
 id: user.id,
 name: user.name,
 email: user.email,
 links: {
 self: { href: `/api/v1/users/${user.id}` },
 posts: { href: `/api/v1/users/${user.id}/posts` },
 comments: { href: `/api/v1/users/${user.id}/comments` }
 }
 };

 res.json(response);
 });

Using HATEOS may increase both server-side and client-side complexity. Some clients may
need adjustments to handle dynamic navigation based on hypermedia, which may be
challenging if they’re designed for static URLs.

Tip #6: Embrace Statelessness
for Scalability
In a stateless API, every request must contain all the necessary
information for the server to understand and process it, without
relying on previous interactions (the server does not store any
session or client data between requests).

Why is statelessness important?

Scalability: Because there’s no
need to store session data on the
server, it’s easier to distribute
requests across multiple servers,
enabling horizontal scaling.

Resilience: Statelessness allows
any server instance to handle any
request, improving reliability and
enabling failover if one server
goes down.

Simplifies Load Balancing: Load
balancers can distribute requests
evenly without concern for session
continuity, making load
distribution straightforward.

Enhanced Security: Statelessness
reduces the risk of data leakage, as
session data isn’t stored server-side.
Instead, any necessary state is
transferred with each request, usually in
the form of tokens or session identifiers.

Authentication

In a stateless API, authentication is typically managed using
tokens (e.g., JWT - JSON Web Tokens) sent with each request.
Clients authenticate once, receive a token, and include it in the
Authorization header for each subsequent request.

GET /api/v1/orders
Host: example.com
Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...

Tip #7: Secure APIs with OAuth
and JWT
APIs are often accessible over the internet, making them
vulnerable to unauthorized access and various types of attacks.

OAuth Use Case: An
application requiring user
authentication via a third-
party service, such as a
mobile app allowing users to
sign in with Google or
Facebook.

JWT Use Case: A single-page
application (SPA) that uses
JWT for secure, stateless
authentication, allowing the
app to make authenticated
requests without storing user
sessions on the server.

Authorization Request: The client
app redirects the user to an
authorization server (e.g., Google)
where the user grants permission.
Authorization Code: The
authorization server redirects the
user back to the app with an
authorization code.
Token Exchange: The client app
exchanges the authorization code
for an access token by
authenticating itself with the
authorization server.
Access Token Usage: The app uses
the access token to access the API
on the user’s behalf, providing it in
the Authorization header.

User Logs In: The user sends their
login credentials (e.g., username and
password) to the API.
Token Issuance: If credentials are
valid, the server generates a JWT
containing user information and
returns it to the client.
Client Stores Token: The client
stores the JWT (e.g., in local storage
or cookies).
Token Sent with Requests: For each
API request, the client sends the JWT
in the Authorization header.
Token Verification: The server
verifies the JWT on each request and,
if valid, processes the request.

JWT Code Example in Node.js

const jwt = require('jsonwebtoken');
const express = require('express');
const app = express();

// Secret for JWT signing
const JWT_SECRET = 'your_jwt_secret';

// Login route to authenticate users and issue a token
app.post('/login', (req, res) => {
 const { username, password } = req.body;
 // Authenticate user
 const user = authenticateUser(username, password);
 if (user) {
 const token = jwt.sign({ id: user.id, username: user.username },
JWT_SECRET, { expiresIn: '1h' });
 res.json({ token });
 } else {
 res.status(401).json({ message: 'Invalid credentials' });
 }
});

// Middleware to protect routes
function authenticateToken(req, res, next) {
 const authHeader = req.headers['authorization'];
 const token = authHeader && authHeader.split(' ')[1];
 if (!token) return res.sendStatus(401);

 jwt.verify(token, JWT_SECRET, (err, user) => {
 if (err) return res.sendStatus(403);
 req.user = user;
 next();
 });
}

// Protected route example
app.get('/api/protected', authenticateToken, (req, res) => {
 res.json({ message: "Welcome to the protected route, " +
req.user.username });
});

app.listen(3000, () => console.log("Server running on port 3000"));

Tip #8: Choose the Correct
HTTP Methods
The most common HTTP methods used in RESTful APIs are
GET, POST, PUT, PATCH, and DELETE. Each method has a
specific purpose, following REST principles.

GET
Purpose: Retrieves data from the server
without modifying it.
Idempotent: Yes, meaning multiple GET
requests should return the same result.
Use Case: Fetching data (e.g., retrieving a
user’s profile or list of products).
Example:
GET /api/v1/users/123

POST
Purpose: Creates a new resource on
the server.
Idempotent: No, as each request
typically results in a new resource.
Use Case: Adding new resources (e.g.,
creating a new user, adding an item to
an order).
Example:
POST /api/v1/users
Content-Type: application/json
{
 "name": "Alice",
 "email": "alice@example.com"
}

PUT
Purpose: Updates or replaces an existing
resource. If the resource doesn’t exist,
some APIs may create it.
Idempotent: Yes, as repeated PUT
requests result in the same final state.
Use Case: Updating a resource with new
data (e.g., updating user information).

PATCH
Purpose: Partially updates an existing
resource by only sending the fields to be
modified.
Idempotent: Yes, as repeating the same
request has the same effect.
Use Case: Making partial updates to an
object (e.g., updating only the email).
Example:
PATCH /api/v1/users/123
Content-Type: application/json
{
 "email": "newemail@example.com"
}

DELETE
Purpose: Removes a specified resource
from the server.
Idempotent: Yes, as deleting a resource
repeatedly will yield the same result
(resource remains deleted).
Use Case: Deleting a resource (e.g.,
removing a user from the system).
Example:
DELETE /api/v1/users/123

Tip #9: Use Caching for
Performance Optimization
Caching reduces the need to reprocess frequently requested
data, which decreases the workload on the server.

Client-Side Caching:
The client (e.g., a browser
or mobile app) stores a
copy of the data locally,
reducing the need to
repeatedly fetch the same
data from the server.
Useful for static assets
and infrequent updates.
Controlled with HTTP
headers like Cache-
Control and ETag.

Server-Side Caching:
The server caches
frequently requested data
to reduce redundant
processing.
Commonly used for
caching database
queries, heavy
computations, or API
responses.
Can be stored in memory
(e.g., using Redis or
Memcached) or in a
dedicated caching layer.

Proxy Caching:
Proxy servers or
Content Delivery
Networks (CDNs) store
copies of frequently
requested responses
closer to the client’s
location, reducing
latency.
Ideal for APIs serving
global clients or
handling high traffic.

Tips for Effective Caching

Use Distributed Caching for High Availability:
▪ In distributed systems, use a distributed cache (e.g., Redis,

Memcached) that multiple servers can access to ensure data
consistency and availability.

Combine Caching Strategies:
▪ Use a mix of client-side, server-side, and proxy caching to create

a layered caching strategy that maximizes efficiency.
Cache Preloading:
▪ For high-demand resources, consider preloading caches during

off-peak hours to ensure data is ready for peak traffic.

Tip #10: Use Pagination for
Large Datasets
By returning data in smaller chunks, pagination reduces memory
usage and processing time on the server and allows APIs to handle
large datasets by distributing data across multiple requests.

Clients can retrieve only the data they need instead of loading entire
datasets, which enhances responsiveness and user experience.

Offset-Based Pagination

Uses an offset and limit to determine which
set of results to return. Commonly used
with SQL databases.
Example: GET
/api/v1/products?offset=20&limit=10 (skips
the first 20 items and returns the next 10).
Pros: Simple to implement and widely
supported.
Cons: Performance can decrease for large
offsets, especially with large datasets.

Page-Based Pagination

Divides results into numbered pages,
where each page contains a fixed number
of items.
Example: GET
/api/v1/products?page=3&size=10
(returns the 3rd page with 10 items per
page).
Pros: Intuitive and easy to navigate.
Cons: Similar to offset pagination.

Cursor-Based (Keyset) Pagination

Uses a unique identifier (e.g., timestamp or
ID) from the last item in the current set to
fetch the next set of results.
Example: GET
/api/v1/products?cursor=12345&limit=10
(returns items after item with ID 12345).
Pros: Efficient for large datasets and avoids
issues with large offsets.
Cons: More complex to implement and
requires a unique, sequential key.

Time-Based Pagination

Uses timestamps to paginate through
records that are sorted chronologically,
useful for time-sensitive data like logs or
event streams.
Example: GET /api/v1/logs?start=2023-
01-01T00:00:00Z&end=2023-01-
01T23:59:59Z&limit=100.
Pros: Effective for time-series data and
real-time updates.
Cons: Limited to data sorted by time and
may not be suitable for all datasets.

Tip #11: Implement Standard
HTTP Status Codes

Standard HTTP status codes provide clients with a clear
understanding of the outcome of their requests.

Using well-known codes reduces ambiguity, as developers are
familiar with them, making debugging easier.

Standard status codes allow APIs to work seamlessly with various
clients, libraries, and tools that rely on these codes for error
handling and response handling.

2xx Success Codes:

200 OK
201 Created
202 Accepted
204 No Content

3xx Redirection Codes:

304 Not Modified (Used
for caching)

4xx Client Error Codes:

400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
405 Method Not Allowed
409 Conflict
429 Too Many Requests

5xx Server Error Codes:

500 Internal Server Error
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout

if (!user) {
 // 404 Not Found
 return res.status(404).json({
 status: 404,
 error: "Not Found",
 message: `User with ID ${userId}
 not found`
 });
}

// 200 OK
res.status(200).json({
 status: 200,
 data: user
});

Tip #12: Use Query Parameters
and Path Parameters Correctly

Path Parameters and Query Parameters are two primary ways
to pass information to RESTful APIs, but each serves a distinct
purpose.

Path Parameters

Used to identify specific resources in an API, typically forming
part of the URL structure.

Example: /api/v1/users/123 (where 123 is a path parameter
identifying a specific user).

Query Parameters

Used to filter, sort, or modify data retrieval, allowing clients to
customize their requests.

Optional, and do not change the resource itself; instead, they
modify the response or narrow down the results.

Example: /api/v1/users?sort=name&limit=10 (where sort and
limit are query parameters used to refine results).

Tip #13: Ensure Data Consistency
for Complex Operations

In complex systems, multiple operations can affect the same data. Ensuring
consistency helps prevent issues such as race conditions, data duplication,
and loss of data integrity.

Database Transactions: Utilize database transactions to group multiple
operations into a single atomic unit. If any operation fails, the entire
transaction is rolled back, preserving data integrity.
In relational DBs, you can use BEGIN, COMMIT, and ROLLBACK commands
to control transactions. Some NoSQL DBs, like MongoDB, also support multi-
document transactions to ensure atomicity across multiple documents.

Distributed Transactions: For distributed systems, consider using
distributed transaction protocols like two-phase commit (2PC): Phase 1:
Prepare, Phase 2: Commit/Rollback.

Distributed Locking: Prevent concurrent operations from causing conflicts.
Redis provides a popular library called Redlock for distributed locks.

Eventual Consistency: Allows for faster operations, higher availability, and
scalability, as the system does not need to lock or synchronize data
immediately. Updates propagate across the system, but clients might see
different versions temporarily.

Optimistic Concurrency Control (OCC):

▪ Assume that conflicts are rare and check
for them at commit time.

▪ If a conflict is detected, the transaction
is aborted, and the client can retry the
operation.

▪ Suitable for low-conflict scenarios.

Pessimistic Concurrency Control (PCC):

▪ Lock resources to prevent concurrent
access and conflicts.

▪ More suitable for high-conflict
scenarios, but can impact
performance.

Tip #14: Consider Using Custom
Data Types (DTOs)
DTO (Data Transfer Object) is a design pattern used to transfer
data between layers or components in an application, typically
from the server to the client in the context of APIs.

When the data structure in your application is complex, and
direct exposure would be confusing, DTOs allow you to design
simpler, client-friendly structures.

// User DTO definition
class UserDTO {
 constructor(user) {
 this.id = user._id;
 this.name = user.name;
 this.email = user.email;
 this.role = user.role;
 }
 }

 // Express route with DTO
 app.get('/api/v1/users/:id', async (req, res) => {
 // Fetch user from the database
 const user = await UserService.getUserById(req.params.id);
 const userDTO = new UserDTO(user); // Transform user to DTO
 res.json(userDTO);
 });

Keep DTOs free of business logic; they should strictly be used to
format and transfer data. Business logic should remain in the
service or business layer.

Document the structure of each DTO in your API documentation,
including fields, data types, and descriptions to help clients
understand the expected responses.

Tip #15: Document Your API
Effectively
Clear documentation helps developers quickly understand how
to integrate and interact with your API, reducing frustration and
confusion.

Consider providing a quick start guide with basic authentication,
example requests, and setup instructions to help new users get
started faster.

OpenAPI Specification (OAS) / Swagger, is a widely adopted
standard for API documentation that provides a structured
format for defining endpoints, parameters, responses, and more.

openapi: 3.0.0
info:
 title: Example API
 version: "1.0"
paths:
 /users/{id}:
 get:
 summary: Retrieve user by ID
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: integer
 responses:
 '200':
 description: User found

Tools like Redoc, Slate,
and RapiDoc generate
professional
documentation based on
OpenAPI specifications.

These tools offer clean,
user-friendly interfaces for
browsing API details

Tip #16: Use CORS for Secure
Cross-Origin Requests
CORS (Cross-Origin Resource Sharing) is a security mechanism that controls how
web pages can request resources from a different origin (domain, protocol, or
port) than the one that served the web page.

CORS restricts which external websites can access your API, reducing the risk of
unauthorized data access and enhancing security.

// Configure CORS
app.use(cors({
 origin: 'https://example.com', // Restrict to specific origin
 methods: ['GET', 'POST', 'PUT', 'DELETE'], // Allowed methods
 allowedHeaders: ['Content-Type', 'Authorization'], // Headers
 credentials: true // Allow cookies and credentials
}));

app.get('/api/v1/data', (req, res) => {
 res.json({ message: "This is a CORS-enabled response!" });
});

Best Practices for Configuring CORS

Allow Specific Origins Only: Avoid setting Access-Control-Allow-Origin to *

Limit Allowed Methods: Avoid allowing methods like DELETE unless required.

Restrict Headers Carefully: For instance, only allow Authorization and Content-Type
if these are required.

Enable Credentials Only When Necessary: Setting Access-Control-Allow-
Credentials: true may expose sensitive data to other origins

Use Preflight Responses to Control Access: Ensure your server responds to preflight
requests correctly by including Access-Control-Allow-Methods and Access-Control-
Allow-Headers.

Tip #17: Handle File Uploads
Securely

File uploads, if not properly managed, can expose APIs to malicious files,
such as malware, that could harm the server or end-users.

Best Practices for Secure File Uploads

Limit Allowed File Types: Only permit specific file types (e.g., images, PDFs)
and reject unsupported formats to reduce the risk of harmful files. Use MIME
type checking or libraries like file-type in Node.js to detect file types based
on content signatures:

Set Maximum File Size and Implement Rate Limiting for Uploads: Limit
the file size to prevent large uploads that could consume excessive
resources or result in Denial of Service (DoS) attacks.

Use Secure Storage Locations: Store files in a separate directory outside
the application’s root directory to avoid accidental access through the web
server. Consider using cloud storage services like AWS S3, Google Cloud
Storage, or Azure Blob Storage for storing files securely.

Rename Uploaded Files: Rename uploaded files to prevent issues with
path traversal and overwrite attacks. A common approach is to generate a
unique file name based on a UUID or timestamp.

Implement Virus Scanning: Scan uploaded files for malware before
processing them.

const fileType = require('file-type');
const fileTypeResult = await fileType.fromBuffer(fileBuffer);
if (fileTypeResult.ext !== 'jpg' && fileTypeResult.ext !== 'png’)
{
 throw new Error('Invalid file type');
}

Tip #18: Monitor and Log API
Activity

Monitoring API activity helps detect and respond to suspicious behavior,
such as unauthorized access attempts or abuse.

Use Structured Logging: Store logs in structured formats like JSON to
make logs easier to parse and analyze programmatically, enabling more
effective troubleshooting.

Set Log Levels: Define log levels (e.g., info, warn, error, debug) and log
data accordingly to reduce noise. Errors and warnings should be logged
separately from informational messages to improve readability.

Implement Log Rotation and Retention Policies:
Avoid excessive storage use by setting log rotation policies (e.g., daily log
rotation) and retention limits, especially for high-volume APIs.

Anonymize or Obfuscate Sensitive Data:
Avoid logging sensitive information like user passwords, credit card details,
or personally identifiable information (PII) to protect user privacy and
comply with data protection regulations.

Use Distributed Tracing for Microservices:
In a microservices environment, use distributed tracing tools (e.g.,
OpenTelemetry, Jaeger) to trace requests across services and identify
bottlenecks or failures in the call chain.

Alert on Anomalies:
Set up automated alerts for abnormal patterns, such as spikes in error
rates, latency, or traffic, to enable proactive issue detection and faster
resolution.

Tip #19: Use Webhooks for
Real-Time Data

Webhooks are HTTP callbacks that enable one system to send real-time
data or event notifications to another system automatically. Instead of
polling for updates, a webhook allows an API to push data whenever a
specific event occurs, such as a new user registration or payment
transaction.

Step 1: Subscription/Registration:
The client registers a webhook URL with the service provider, specifying the
events they want to receive (e.g., “new user signup” or “order completed”).

Step 2: Event Trigger:
When an event occurs in the service provider’s system (e.g., a new order is
placed), the service triggers the webhook.

Step 3: Data Transmission:
The service provider makes an HTTP request (usually a POST) to the
webhook URL with a payload containing details about the event.

Step 4: Processing the Webhook:
The client system receives and processes the webhook data, triggering the
appropriate actions (e.g., updating a database, sending notifications, etc.).

Examples of Platforms Offering Webhooks

Stripe: Payment success/failure, subscription updates, chargebacks.
GitHub: Push events, pull requests, issue comments.
Shopify: New orders, product updates, inventory changes.
Twilio: SMS received, call status, messaging errors.

Tip #20: Make Use of API
Management Services from Azure,
AWS, and GCP
API Management services offered by major cloud providers like
Azure API Management, AWS API Gateway, and Google Cloud
API Gateway provide end-to-end solutions for deploying,
securing, monitoring, and managing APIs at scale.

These services streamline API development and enable teams to
enforce policies, set rate limits, secure endpoints, and gather
analytics without needing to build these features from scratch.

Feature Azure API
Management

AWS API
Gateway

Google Cloud API
Gateway

API Security OAuth2, JWT, IP
filtering

IAM roles, API
keys, Cognito

Google IAM, API
keys, JWT, Google
ID

Rate Limiting Yes Yes Yes

Monitoring and
Logging

Azure Monitor,
Application
Insights

CloudWatch, X-
Ray

Cloud Monitoring,
Cloud Logging

API Versioning Built-in versioning
and revisions

Custom
implementation

Custom
implementation

Multi-Protocol
Support REST, SOAP REST, WebSocket REST, gRPC

Serverless
Integration

Azure Functions,
Logic Apps AWS Lambda Cloud Functions,

Cloud Run

Developer Portal Built-in and
customizable

Limited; requires
custom setup No native portal

Tip #21: Listen to Feedback and
Continuously Improve

A responsive API team that continuously improves the service based on real
user input increases trust, making the API more attractive to both current
and prospective users.

Strategies for Gathering and Analyzing Feedback

User Surveys and Interviews: Conduct regular surveys or feedback
sessions with users to understand their experience, what features they find
valuable, and any challenges they encounter.

API Analytics and Monitoring: Use analytics platforms to capture metrics
such as average response time, error rates, and most frequently used
endpoints.

Feature Requests and Voting: Implement a feature request board where
users can suggest new features and vote on existing suggestions.

Changelog and Release Notes: Track changes in a public changelog, so
users can see what’s new, fixed, or improved.

Conduct Usability Testing and Hackathons: Organize usability testing
sessions with new users to observe how they interact with the API,
highlighting potential onboarding issues or confusing endpoints.

Engage with the Developer Community: Participate in discussions on
developer forums, GitHub issues, and social media, responding to feedback
and keeping users informed of planned improvements.

Measure the Impact of Improvements: Track the impact of each change.
Monitoring the effect of changes helps validate if updates align with user
needs.

Marian Veteanu
Technology Architect and Product Leader

Excited to join an organization
where I can make an impact!

Let’s connect and explore opportunities—
message me!

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

https://www.linkedin.com/in/mveteanu/
https://x.com/mveteanu

	Slide 1: 21 Tips for Designing Web APIs
	Slide 2: From APIs to Web APIs
	Slide 3: Tip #1: Choose the Right API Style: REST, SOAP, or GraphQL
	Slide 4: Tip #2: Understand Idempotency and Its Importance
	Slide 5: Tip #3: Implement Rate Limiting to Prevent Abuse
	Slide 6: Tip #4: Use Versioning to Maintain Compatibility
	Slide 7: Tip #5: Consider using HATEOAS for Dynamic Discovery
	Slide 9: Tip #6: Embrace Statelessness for Scalability
	Slide 10: Tip #7: Secure APIs with OAuth and JWT
	Slide 11: JWT Code Example in Node.js
	Slide 12: Tip #8: Choose the Correct HTTP Methods
	Slide 13: Tip #9: Use Caching for Performance Optimization
	Slide 14: Tip #10: Use Pagination for Large Datasets
	Slide 15: Tip #11: Implement Standard HTTP Status Codes
	Slide 16: Tip #12: Use Query Parameters and Path Parameters Correctly
	Slide 17: Tip #13: Ensure Data Consistency for Complex Operations
	Slide 18: Tip #14: Consider Using Custom Data Types (DTOs)
	Slide 19: Tip #15: Document Your API Effectively
	Slide 20: Tip #16: Use CORS for Secure Cross-Origin Requests
	Slide 21: Tip #17: Handle File Uploads Securely
	Slide 22: Tip #18: Monitor and Log API Activity
	Slide 23: Tip #19: Use Webhooks for Real-Time Data
	Slide 24: Tip #20: Make Use of API Management Services from Azure, AWS, and GCP
	Slide 25: Tip #21: Listen to Feedback and Continuously Improve
	Slide 26: Marian Veteanu Technology Architect and Product Leader Excited to join an organization where I can make an impact! Let’s connect and explore opportunities—message me! https://www.linkedin.com/in/mveteanu/ https://x.com/mveteanu

